In search of new excited states of ⁵⁷Cu*

A. Malinowski 1,2 , P. Sekrecka 2 , M. Palacz 2 , A. Fijałkowska 1 , G. Jaworski 2 , and I. Kuti 3 for the EAGLE-NEDA-DIAMANT collaboration

¹Faculty of Physics, University of Warsaw, Warsaw, Poland ²Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland and ³HUN-REN Institute for Nuclear Research (HUN-REN ATOMKI), Debrecen, Hungary

An experiment aiming to identify new excited states in 57 Cu was conducted in the Heavy Ion Laboratory of the University of Warsaw. This nucleus has only one valence proton outside the doubly magic self-conjugate N = Z = 28, 56 Ni core. Assuming a rigid core, its ground state and low lying excited states should thus be well described by very pure Shell Model configurations, with the valence proton placed in $p_{3/2}$, $f_{5/2}$, $p_{1/2}$ and $g_{9/2}$ orbitals, corresponding to states with spin and parity $3/2^-$, $5/2^-$, $1/2^-$, $9/2^+$, respectively. However, evidence is available that the N = Z = 28 core is relatively soft and its excitations are highly collective. Thus, an interplay of single-particle and collective effects should also be manifested in the excited states of 57 Cu. Currently, the ground state and the first two excited states are known and interpreted as configurations $p_{3/2}$, $f_{5/2}$, $p_{1/2}$, respectively [1-3]. A few high energy states were also observed as resonances in transfer reactions [4] or via spectroscopy of protons emitted after the 57 Zn β^+ decay [1]. The project aims to identify the $9/2^+$ single particle state and a possible collective negative parity cascade above $7/2^-$ (seen in the mirror 57 Ni nucleus).

An 82 MeV beam of 32 S was used to bombard a 28 Si target. In this reaction one proton and two neutrons (p2n) have to be emitted from the compound nucleus (60 Zn), to reach 57 Cu. The reaction is dominated by the channels associated with the emission of 2 or 3 protons, possibly together with 1 neutron. The cross section for the p2n reaction channel leading to 57 Cu is expected to be about $3 \cdot 10^{-4}$ of the total fusion cross section, thus a method to select events of interest is needed. For this purpose a setup was deployed, in which beside the high purity germanium detector array EAGLE [5], the neutron detector array NEDA [6] and the light charged particle detector DIAMANT [7] were included.

Analysis of the collected data is in progress. Preliminary tasks, like calibrations, stability corrections, and event building, are completed. Ongoing efforts focus on improving γ /neutron discrimination in the NEDA detectors as well as on the proper determination of the number of registered neutrons. This number is crucial for the selection of 1p2n events, but a single neutron can interact in multiple detectors, leading to a false 2n gating condition. The aim of the work is to reveal the desired 57 Cu lines or establish the detection limit for this isotope in the experiment.

- [1] D. F. Sherman et al., Phys. Lett. **B60** (1976) 261.
- [2] X. G. Zhou et al., Phys. Rev. C53 (1996) 982.
- [3] D. Kahl et al., Phys. Lett. **B797** (2019) 134803.
- [4] E. Stiliaris et al., Zeitschrift für Physik **A326** (1987) 139.
- [5] J. Mierzejewski et al., Nucl. Inst. and Meth. A659 (2011) 84.
- [6] J.J. Valiente-Dobon et al., NIM A927 (2019) 81.
- [7] I. Kuti et al., Acta Phys. Pol. B17 (2024) 3-A13, and references therein.

^{*}This work is partly supported by the National Science Centre, Poland under Grant Agreement No. 2020/39/D/ST2/00466.